解决Redis、MySQL缓存双写不一致问题

解决Redis、MySQL缓存双写不一致问题

redis、mysql双写缓存不一致:

解决Redis、MySQL缓存双写不一致问题

但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存。又或者是先删除缓存,再更新数据库,其实大家存在很大的争议。目前没有一篇全面的博客,对这几种方案进行解析。

正文

给缓存数据设置过期时间

先做一个说明,从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。这种方案下,我们可以对存入缓存的数据设置过期时间,所有的写操作以数据库为准,对缓存操作只是尽最大努力即可。也就是说如果数据库写成功,缓存更新失败,那么只要到达过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。因此,接下来讨论的思路不依赖于给缓存设置过期时间这个方案。

在这里,我们先讨论三种更新策略

  1. 先更新数据库,再更新缓存
  2. 先删除缓存,再更新数据库
  3. 先更新数据库,再删除缓存

先更新数据库,再更新缓存

这套方案,大家普遍反对。为什么呢?有如下两点:

  • 原因一(线程安全角度)

(1)线程A更新了数据库

(2)线程B更新了数据库

(3)线程B更新了缓存

(4)线程A更新了缓存

这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。

  • 原因二(业务场景角度)

(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。

(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

先删除缓存,再更新数据库

该方案会导致不一致原因是。同时一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:

(1)请求A进行写操作,删除缓存

(2)请求B查询发现缓存不存在

(3)请求B去数据库查询得到旧值

(4)请求B将旧值写入缓存

(5)请求A将新值写入数据库

上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

那么,如何解决呢?采用延时双删策略

缓存延时双删

public class CacheServiceImpl implements ICacheService {
​
    @Resource
    private RedisOperator redisOperator;
    
    @Autowired
    private IShopService shopService;
​
    //1. 采用延时双删,解决数据库和缓存的一致性
    @Override
    public void updateHotCount(String id) {
        try {
            //删除缓存
            redisOperator.del("redis_key_" + id);
            //更新数据库
            shopService.updataHotShop();
            Thread.sleep(1000);//休眠1秒
            //延时删除
            redisOperator.del("redis_key_" + id);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
​
​
    }
​
    @Override
    public Integer getHotCount(String id) {
        return null;
    }
}

解释:

  1. 先淘汰缓存
  2. 再写数据库
  3. 休眠1秒,再淘汰缓存(这么做,可以将1秒内所造成的缓存脏数据,再次删除。

针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

如果数据库采用了读写分离架构,这么办?主库负责写操作,从库负责读操作

ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。

(1)请求A进行写操作,删除缓存,请求A把数据写入主库,还没开始同步从库

(2)(1s内)请求B查询缓存,没有发现缓存,请求B去从库查询,这时还没有完成主从同步,查到是旧值,并且把旧值写入缓存。

(3)主库完成主从同步,从库变为新值

上述流程,就是数据不一致问题,还使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础之上,加几百ms

采用这种同步淘汰策略,吞吐量降低怎么办?

ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。

第二次删除,如果删除失败怎么办?

这是个非常好的问题,因为第二次删除失败,就会出现如下情形。还是有两个请求,一个请求A进行更新操作,另一个请求B进行查询操作,为了方便,假设是单库:

(1)请求A进行写操作,删除缓存

(2)请求B查询发现缓存不存在

(3)请求B去数据库查询得到旧值

(4)请求B将旧值写入缓存

(5)请求A将新值写入数据库

(6)请求A试图去删除请求B写入对缓存值,结果失败了。

ok,这也就是说。如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。

如何解决呢?

具体解决方案,且看博主对第先更新数据库,再删缓存种更新策略的解析。

删除缓存重试机制

不管是延时双删还是Cache-Aside的先操作数据库再删除缓存,都可能会存在第二步的删除缓存失败,导致的数据不一致问题。可以使用这个方案优化:删除失败就多删除几次呀,保证删除缓存成功就可以了呀~ 所以可以引入删除缓存重试机制

解决Redis、MySQL缓存双写不一致问题
  1. 更新数据库数据;
  2. 缓存因为种种问题删除失败
  3. 将需要删除的key发送至消息队列
  4. 自己消费消息,获得需要删除的key
  5. 继续重试删除操作,直到成功

然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。

读取biglog异步删除缓存

解决Redis、MySQL缓存双写不一致问题

流程如下图所示:

(1)更新数据库数据

(2)数据库会将操作信息写入binlog日志当中

(3)订阅程序提取出所需要的数据以及key

(4)另起一段非业务代码,获得该信息

(5)尝试删除缓存操作,发现删除失败

(6)将这些信息发送至消息队列

(7)重新从消息队列中获得该数据,重试操作。

备注说明:上述的订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。至于oracle中,博主目前不知道有没有现成中间件可以使用。另外,重试机制,博主是采用的是消息队列的方式。如果对一致性要求不是很高,直接在程序中另起一个线程,每隔一段时间去重试即可,这些大家可以灵活自由发挥,只是提供一个思路。

本文其实是对目前互联网中已有的一致性方案,进行了一个总结。对于先删缓存,再更新数据库的更新策略。

文章来源:https://www.cnaaa.net,转载请注明出处:https://www.cnaaa.net/archives/5950

(0)
安屠生的头像安屠生
上一篇 2022年8月19日 下午3:08
下一篇 2022年8月21日 下午1:39

相关推荐

  • MySQL服务器开启SSL加密功能

    MySQL服务器开启SSL加密功能 我们知道,MySQL5.7之前版本,安全性做的并不够好,比如安装时生成的root空密码账号、存在任何用户都能连接上的test库等,导致数据库存在较大的安全隐患。好在5.7版本对以上问题进行了一一修复。与此同时,MySQL 5.7版本还提供了更为简单SSL安全访问配置,且默认连接就采用SSL的加密方式,这让数据库的安全性提高…

    2023年12月18日
    12900
  • MySQL 常用脚本

    1.导出整个数据库   2.导出一个表   3.导出一个数据库结构 4.导入数据库  

    2023年4月25日
    34700
  • JetBrains产品安装破解分享–DataGrip

    第一步: 下载最新的 Datagrip 2022.3.1 版本安装包 我们先从 Datagrip 官网下载 Datagrip 2022.3.1 版本的安装包,下载链接如下: 第二步:卸载老版本 Datagrip 卸载时删除本地数据 第三步: 开始安装 DataGrip 2022.3.1 版本 安装路径可更改 创建桌面快捷方式 安装完成后勾选 Run Data…

    2023年3月15日
    46700
  • 数据库压力测试

    一、前言 在前面的压力测试过程中,主要关注的是对接口以及服务器硬件性能进行压力测试,评估请求接口和硬件性能对服务的影响。但是对于多数Web应用来说,整个系统的瓶颈在于数据库。 原因很简单:Web应用中的其他因素,例如网络带宽、负载均衡节点、应用服务器(包括CPU、内存、硬盘、连接数等)、缓存,都很容易通过水平的扩展(俗称加机器)来实现性能的提高。而对于MyS…

    2023年3月21日
    26400
  • 手把手教你在Centos7.6环境下安装Redis(含详细图文)

    1.Linux安装redis 下载: wget http://download.redis.io/releases/redis-2.8.17.tar.gz 解压源码包 tar xzf redis-2.8.17.tar.gz 解压完成后的目录 redis-2.8.17 安装 执行完make命令后,在redis-2.8.17 的 src目录下会出现编译后的 re…

    2022年6月14日
    52200

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

在线咨询: QQ交谈

邮件:712342017@qq.com

工作时间:周一至周五,8:30-17:30,节假日休息

关注微信